Harmonic continuous time branching moments

نویسندگان

  • Didier Piau
  • D. PIAU
چکیده

We show that the mean inverse populations of nondecreasing, square integrable, continuous-time branching processes decrease to zero like the inverse of their mean population if and only if the initial population k is greater than a first threshold m1 ≥ 1. If, furthermore, k is greater than a second threshold m2 ≥ m1, the normalized mean inverse population is at most 1/(k −m2). We express m1 and m2 as explicit functionals of the reproducing distribution, we discuss some analogues for discrete time branching processes and link these results to the behavior of random products involving i.i.d. nonnegative sums.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic moments of non homogeneous branching processes

We study the harmonic moments of Galton-Watson processes, possibly non homogeneous, with positive values. Good estimates of these are needed to compute unbiased estimators for non canonical branching Markov processes, which occur, for instance, in the modeling of the polymerase chain reaction. By convexity, the ratio of the harmonic mean to the mean is at most 1. We prove that, for every square...

متن کامل

Annealed Moment Lyapunov Exponents for a Branching Random Walk in a Homogeneous Random Branching Environment∗

We consider a continuous-time branching random walk on the lattice Z (d ≥ 1) evolving in a random branching environment. The motion of particles proceeds according to the law of a simple symmetric random walk. The branching medium formed of Markov birth-and-death processes at the lattice sites is assumed to be spatially homogeneous. We are concerned with the long-time behavior of the quenched m...

متن کامل

Cities as Evolutionary Systems in Random Media∗

The purpose of the paper is to discuss some potential applications of random media theory to urban modelling, with the emphasis on the intermittency phenomenon. The moment test of intermittency is explained using the model of continuous-time branching random walk on the integer lattice Zd with random branching rates. Statistical moments of the population density are studied using a Cauchy probl...

متن کامل

On Mittag-Leffler distributions and related stochastic processes

Random variables with Mittag-Leffler distribution can take values either in the set of non-negative integers or in the positive real line. There can be of two different types, one (type-1) heavy-tailed with index α ∈ (0, 1), the other (type-2) possessing all its moments. We investigate various stochastic processes where they play a key role, among which: the discrete space/time Neveu branching ...

متن کامل

Generic polar harmonic transforms for invariant image representation

This paper introduces four classes of rotation-invariant orthogonal moments by generalizing four existing moments that use harmonic functions in their radial kernels. Members of these classes share beneficial properties for image representation and pattern recognition like orthogonality and rotation-invariance. The kernel sets of these generic harmonic function-based moments are complete in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005